
Printing In Delphi:
Printing An Invoice Report
by Xavier Pacheco

➤ Figure 1:
MastApp
demo
program
on which
this month’s
example is
based

procedure TEdOrderForm.PrintBtnClick(Sender: TObject);
var
 InvoiceReport: TInvoiceReport;
begin
 InvoiceReport := TInvoiceReport.Create;
 try
 InvoiceReport.PrintInvoice;
 finally
 InvoiceReport.Free;
 end;
end;

➤ Listing 1

Last month I showed you how to
print items to scale, a useful

technique when your printed out-
put must look the same on printers
of different resolutions. This
month, I’m going to show you how
to print a report using only Object
Pascal code. Specifically, I’m going
to add a unit to the MastApp demo
that ships with Borland Delphi 2.0.
This unit will enable you to print a
professional looking invoice for
orders in Borland’s sample appli-
cation. All you have to do is add the
unit to the application and change
the code on a single event handler.

The unit is included on the disk
with this issue. I didn’t include the
entire application because it
belongs to Borland; you should,
however, have this application in
the \DELPHI 2.0\DEMOS\DB\MASTAPP

directory. Also, I want to thank Joe
Hecht at Borland’s Developer
Support who reviewed this article
and offered some excellent advice
which I included.

Setting Up The PtInvoice Unit
As stated in the introduction, I
decided to use the MastApp demo
to demonstrate how to print a real-
world report. This is primarily
because this demo is a realistic
inventory application. What was
missing from this demo was the
ability to actually print an invoice
when an order is made from the
Order Form shown in Figure 1.

You’ll see that the right-most
button on the Order Form is a print
button. All this button does, how-
ever, is print an image of the form.
Therefore, I decided to create a
unit that would print a professional
looking invoice like that shown in
Figure 2.

To set up the PtInvoice unit with
the MastApp demo program, you
only need to modify the EdOrdersc
unit. First, you have to add
PtInvoice to the uses clause of

EdOrders as shown below:

implementation
uses DataMod, SrchDlg,
 Pickdate, PtInvoce;

Next, you have to modify the
PrintBtnClick event handler for the
TSpeedButton component on the
TEdOrderForm to read as shown in
Listing 1.

What the PrintBtnClick method
does is instantiate a TInvoiceReport
object, calls its PrintInvoice
method and then frees that object.
The TInvoiceReport class is defined
in the PtInvoice unit and contains
all the code that performs the
actual printing.

The TInvoiceReport Class
The TInvoiceReport class is shown
in Listing 2. This class contains the
public method PrintReport and
several private methods that per-
form printing tasks. The reason I
encapsulate the printing code into
a class is because I tend to think in
terms of objects by habit. Cer-
tainly, I could have created proce-
dures to do the same, but I find that
it is easier to maintain tasks which
are encapsulated in their own
class.

Each method of TInvoiceReport
performs a different part of the
report. In other words, I broke up
the invoice report as a whole into
several sub-tasks.

August 1996 The Delphi Magazine 15

Breaking Up
The Report Into Sub-Tasks
This is an approach that can be
used to print any type of report. As
with any programming task, you
look at where you can break down
the entire task into several inde-
pendent sub-tasks. From Listing 1
you can see that TInvoiceReport
contains several methods that per-
form the actual sub-tasks. I will be
discussing each of these tasks
separately. Key parts of the re-
mainder of the PtInvoice unit are
shown in Listing 3 (at the end of the
article).

Print Initialization
The public method PrintInvoice
takes care of initializing the print
job and terminating it after calling
the StartPrinting method, which is
where several default field values
are initialized that will be used by
the other methods. StartPrinting
also calls the other methods which
handle various sub-tasks. Table 1
shows the purpose of the various
fields in TInvoiceReport.

You will notice that I used the
Win32 API function GetDeviceCaps
to retrieve the pixels per inch along
the X and Y axis of the printer de-
vice with the following two lines of
code:

FPixInInchX := GetDeviceCaps(
 Printer.Canvas.Handle,
 LOGPIXELSX);
FPixInInchY := GetDeviceCaps(
 Printer.Canvas.Handle,
 LOGPIXELSY);

GetDeviceCaps returns much more
information about the printer de-
vice that you might find useful
(look up the online help for more
information).

You’ll notice that StartPrinting
calls a procedure SetFontSize,
which is required because of an
anomaly that comes up when
setting the font size with different
printer types and resolutions. The
line of code shown below fixes this
problem:

Printer.Canvas.Font.PixelsPerInch:=

 GetDeviceCaps(

 Printer.Canvas.Handle,

 LOGPIXELSY);

TInvoiceReport = class
 private
 FPageNum: Integer; // Keeps track of pages
 FPixInInchX, // # of pixels per horizontal inch
 FPixInInchY: Integer; // # of pixels per vertical inch
 FAmountPrintedY: Integer; // Keeps track of pixels used along Y axis
 FPageCenterX: Integer; // Center of the page, used for alignment
 FLeftMargin: Integer; // Left Border Margin
 FDiscountAlignPos: Integer; // Used for alignment
 FSellPriceAlignPos: Integer; // Used for alignment
 FExtPriceAlignPos: Integer; // Used for alignment
 procedure StartPrinting; // Starts the printing process
 procedure PrintBorders; // Prints the border
 procedure PrintHeading; // Prints heading information
 procedure PrintCustomerInfo; // Prints Bill To information
 procedure PrintShipToInfo; // Prints Ship To information
 procedure PrintOrderInfo; // Prints Order data
 procedure PrintTitles; // Prints item titles
 procedure PrintRecords; // Prints ordered items
 procedure PrintTotals; // Prints totals
 procedure PrintFooter; // Prints footer and page number
 function PageDone: Boolean; // Determines if there is vertical space left
 function GetLineHeight: Integer; // Calculates a line height
 procedure SetFontSize(Size: Integer); // Sets the font size
 procedure WriteDecimalAlign(R: TRect; S: String; RAlignPos: Integer);
 { Writes floating point number based on specific decimal alignment position }
 public
 procedure PrintInvoice; { Public procedure to print the invoice }
 end;

➤ Above Figure 2: The printed report
➤ Below: Listing 2

16 The Delphi Magazine Issue 12

In Delphi 1.0, this value was never
set correctly. It has been experi-
enced that Delphi 2.0 occasionally
does not set this value either. For
example, if you switch from a 300
dpi printer to a 720 dot printer,
Printer.Canvas.Font.PixelsPerInch will
remain at 300. The font will either
print too large or too small. As
stated above, the line shown fixes
this problem. Also, although I don’t
show this here, you can even cre-
ate your own font and set the font’s
width and height so that you can
account for printers that don’t
have a 1:1 aspect ratio, eg 300x600
dpi. Delphi will not properly handle
fonts on such printers.

The rest of StartPrinting calls
the various methods to perform
the printing sub-tasks which I will
now discuss.

Printing The Borders
The PrintBorders method is
straightforward. It uses the TCanvas
methods Rectangle, MoveTo and
LineTo to draw the border for the
invoice that you see in Figure 2.
Notice in this method how I use the
FPixInInchX and FPixInInchY fields
as multipliers so that I can print
using inch measurements. For ex-
ample, the following line uses these
two fields:

Rectangle(FLeftMargin,

 1*FPixInInchY,

 FLeftMargin +
 RightBorderMargin*FPixInInchX,

 Round(2.5*FPixInInchY));

First, examine how the FLeftMargin
field was set in the StartPrinting
method:

FLeftMargin := FPageCenterX -
 Round(3.5*FPixInInchX);

This sets the left border margin 3.5
inches to the left of the page center.
Remember, FPixInInchX holds the
number of pixels per inch along the
X axis of the printer device. There-
fore, on a 300dpi printer the state-
ment 3.5*FPixInInchX would result
in the value 1050. Ultimately, this
will result in a 7 inch distance
between the left and right border
margins and also centered on the
printed page. So, back to the

tRectangle method shown above,
the left-most position of the rectan-
gle is at the position specified by
FLeftMargin. The top is set to 1 inch
from the top of the page with the
statement 1*FPixInInchY. The right
border is set to

 FLeftMargin +
 RightBorderMargin*FPixInInchX

RightBorderMargin is a constant
which is set to the value 7. By mul-
tiplying this by FPixInInchX, I get
the number of pixels that make up
7 inches on the printer device.
Finally, the rectangle is drawn to be
2.5 inches high with the statement
2.5*FPixInInchY.

Also, notice how I set the
Pen.Width property:

Pen.Width :=
 Round(FPixInInchX / 40);

The reason I don’t set the Pen.Width
to something like 1 and 3 is because
this property is not device inde-
pendent. On some high resolution
printers (such as imagesetters at
1270dpi or more), a 1 pixel pen
would not even show up. There-
fore, I set the Pen.Width as a fraction
of an inch rather than by pixel. I
didn’t do this in my code, but just
as a tip, you might also wish to set
the pen’s Width and Height sepa-
rately based on the x and y pixels

per inch of the device if they differ
for the printer you are using.

Now, you might recall from my
last article that it is possible to use
mapping modes to perform this
translation of pixels to inches and
back. However, for this particular
task, I need to be able to draw to
fractions of an inch, which seems
to be more straightforward by
performing the translation myself.
I admit, this is probably personal
preference.

For very precise printing, you
could always set the mapping
mode to MM_TWIPS in which the
logical unit of measurement is
converted to one 20th of a point or
one 1440th of an inch. The same
technique for translating inches to
pixels is used throughout the rest
of the code.

Printing The Heading
The PrintHeading method prints
the three string constants:

Heading1 =
 ’Marine Adventures Inc.’;
Heading2 =
 ’1234 N. Ocean Blvd.’;
Heading3 =
 ’Santa Cruz, CA 95066’;

centered on the upper portion of
the page.

One thing I should mention is the
use of the line:

Field Purpose

FPageNum Keeps track of the current page number.

FPixInInchX Holds the horizontal pixels per inch for the printer
device. This is used as a multiplier for positioning of the
printed output since the printing is done relative to
inches.

FPixInInchY Holds the vertical pixels per inch for the printer device.
Like the FPixInInch field, this is also used as a multiplier
for positioning of the printed output relative to inches.

FAmountPrintedY Keeps track of the current vertical position where
subsequent printing will occur.

FPageCenterX Holds the pixel position of the page center.

FLeftMargin Holds the pixel position of the left border margin.

FDiscountAlignPos Used to align a sales item’s discount value.

FSellPriceAlignPos Used to align a sell price value.

FExtPriceAlignPos Used to align the total price value for a sales item.

➤ Table 1: TInvoiceReport fields

August 1996 The Delphi Magazine 17

FAmountPrintedY :=
 FAmountPrintedY +
 GetLineHeight +
 Round(GetLineHeight/20);

This adds 1 and one 20th of a line
height to FAmountPrintedY based on
the currently set font. To do this, I
created the function GetLineHeight,
which uses the GetTextMetrics
Win32 API function which fills a
TTextMetric structure with infor-
mation about a font. All measure-
ments for this font are given in
logical units. Since I need to know
the height of the text, GetLine-
Height returns the tmHeight field of
the TTextMetric structure. The
TTextMetric structure is docu-
mented in the Windows API online
help under TEXTMETRIC, or look up
the GetTextMetrics function.

Bill To And Ship To Data
The bill to and ship to data is
printed in the PrintCustomerInfo
and PrintShipToInfo procedures
respectively. Each procedure uses
methods similar to that previously
discussed. Notice that both proce-
dures extract the data relating to
customer and shipping from the
controls on the EdOrderForm in the
MastApp demo. Therefore, it was
necessary to add the EdOrders unit
to the uses clause for the PtInvoice
unit. Additionally, the DataMod unit
is also added to the uses clause as
I will use the MastData data module
from the demo as well. The com-
ments in this procedure explain
the code further.

Printing Order Data
Miscellaneous order information is
printed in the PrintOrderInfo
method. Like the two previously
mentioned methods, PrintOrder-
Info gets the data from controls on
the EdOrderForm with the exception
of the order number which is
obtained from the TFloatField,
OrdersOrderNo, which is in the
MastData data module. Also, notice:

LeftTextMargin :=
 RightBorderMargin +
 (FPixInInchX*5);
LeftTextMargin2 :=
 LeftTextMargin + TextWidth(
 ’Payment Method: ’);

This allows me to specify a left mar-
gin for the order information.
You’ll notice in Figure 2 that the
order information is printed in a
columnar fashion. LeftTextMargin
is set so that the labels are printed
5 inches from the right border.
LeftTextMargin2 allows me to left-
align the data just slightly to the
right of the label Payment Method:.
This is just a simple technique
which I use in various places to
allow me to align text in the report.

Sales Items And Their Titles
The PrintTitles method prints the
titles for the sales item fields.
These titles are printed with a bold
font so as to distinguish them as
titles. This method isn’t that differ-
ent from the others previously
mentioned. It is in PrintTitles
where I initialize the values for the
fields FDiscountAlignPos, FSell-
PriceAlignPos and FExtPriceAlign-
Pos. These fields are assigned the
value of the right most position of
the titles to which they apply. I’ll
use these value for right-aligning
decimal values when writing out
the sales item records.

The PrintRecords method prints
all the sales item fields aligned to
their titles. Basically, it just loops
through the Items table on the
MastData data module and prints
the necessary fields. PrintRecords
calls the method WriteDecimalAlign
which prints floating point values
which are decimal aligned. Printing
decimal aligned text is simply a
matter of printing the integer and
fractional portions of the floating
point value separately. When print-
ing the integer portion, it is right-
aligned by using the SetTextAlign
API function. Likewise, when print-
ing the fractional portion, I left
align it and print it along with the
decimal.

Notice as well that PrintRecords
makes use of a function called
PageDone, which is responsible for
determining whether an additional
line will exceed the page height
plus some added space which I’ve
specified. If the page length will be
exceeded, a new page is started.
The borders, header, customer,
bill to and other information is
printed on the new page as well.

Printing The Totals
PrintTotals prints the total
charges for the ordered items. This
method first ensures that all 5 lines
making up the totals information,
plus one vertical inch, will fit on the
current page. If not, a new page is
started. The test is performed with:

if FAmountPrintedY +
 FPixInInchY +
 (GetLineHeight*5) >=
 Printer.PageHeight -
 FPixInInchY then begin

PrintTotals also makes use of the
WriteDecimalAlign function to deci-
mal align the floating point values.
In PrintTotals, you’ll notice several
lines similar to that shown below:

S := TaxRateEdit.Text;
if Pos(’%’, S) = 0 then
 S := S+’%’;

The reason for this is because
when the TDBEdit controls on
EdOrderForm have focus, the literal
characters % or $ disappear. This is
the designed behavior for the con-
trols. However, since we want
these characters to appear in our
printed output, the above logic
simply ensures their presence.

Printing A Footer
The PrintFooter method is the last
sub-task, it simply prints the Footer
constant and the page number.

Conclusion
The main point I wanted to make is
that writing printing code is simpli-
fied when you break down the en-
tire task into several manageable,
independent tasks. This also
makes printing professional look-
ing documents easier to accom-
plish. Next month, I’ll show you
how to get information about the
selected printer and how to set
various print properties.

Xavier Pacheco is a Field Consult-
ing Engineer with Borland
International and co-author of
Delphi 2.0 Developer’s Guide. You
can reach him by email at
xpacheco@wpo.borland.com or
on Compuserve at 76711,666

18 The Delphi Magazine Issue 12

➤ Below and following page: Listing 3. Because of space limitations some parts of this unit are omitted;
however, the full source code is included on the disk with this issue.

unit PtInvoce;
interface
uses Windows, Messages, Dialogs, SysUtils, Classes;
const
 Heading1 = ’Marine Adventures Inc.’;
 Heading2 = ’1234 N. Ocean Blvd.’;
 Heading3 = ’Santa Cruz, CA 95066’;
 Footer = ’All sales are final - no returns or exchanges!!’;
 RightBorderMargin = 7;
type
 TInvoiceReport = class
 {... see Listing 2 }
implementation
uses Printers, EdOrders, DataMod;
function TInvoiceReport.GetLineHeight: Integer;
{ Determines line height based on currently rendered font }
var TM: TTextMetric;
begin
 GetTextMetrics(Printer.Canvas.Handle, TM);
 Result := TM.tmHeight;
end;
procedure TInvoiceReport.SetFontSize(Size: Integer);
{ This procedure sets the printer font size. }
begin
 Printer.Canvas.Font.PixelsPerInch:=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSY);
 Printer.Canvas.Font.Size := Size;
end;
procedure TInvoiceReport.PrintInvoice;
{ Starts the print job, called by the TInvoiceReport user }
begin
 Printer.BeginDoc; // Start the print job.
 try
 StartPrinting ; // Perform the printing operations.
 finally
 Printer.EndDoc; // End the print job.
 end;
end;
procedure TInvoiceReport.StartPrinting;
{ This function calls all of the invoice print function
 after setting up the initial global values. }
begin
 FAmountPrintedY := 0; // Y Position starts at zero
 FPageNum := 1; // Page 1
 { Get the number of pixels along the X and Y axis by
 calling the GetDeviceCaps Win32 API function }
 FPixInInchX :=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSX);
 FPixInInchY :=
 GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSY);
 { Calculate the center of the page }
 FPageCenterX := Round(Printer.PageWidth / 2);
 { The bounding border is 7 inches wide. Therefore, center
 its Left position based on the center of the page }
 FLeftMargin := FPageCenterX - Round(3.5*FPixInInchX);
 { Set a standard font for the report }
 Printer.Canvas.Font.Name := ’Arial’;
 SetFontSize(8); // Set the font size to 8
 PrintBorders; // Print report borders.
 PrintHeading; // Print heading information.
 PrintCustomerInfo; // Print Bill To information.
 PrintShipToInfo; // Print Ship To information.
 PrintOrderInfo; // Print Order data.
 PrintTitles; // Print items titles.
 PrintRecords; // Print sale items.
 PrintTotals; // Print cost totals.
 PrintFooter; // Print footer information.
end;
procedure TInvoiceReport.PrintBorders;
{ This procedure prints out the borders for the report }
begin
 with Printer.Canvas do begin
 Pen.Width := Round(FPixInInchX / 40); // Wider pen width.
 { Draw a rectangle in which the Bill To, Send To and
 order information will be drawn }
 Rectangle(FLeftMargin, 1*FPixInInchY,
 FLeftMargin+RightBorderMargin*FPixInInchX,
 trunc(2.5*FPixInInchY));
 { Rectangle in which the sales items will be drawn. }
 Rectangle(FLeftMargin, trunc(2.5*FPixInInchY),
 FLeftMargin+RightBorderMargin*FPixInInchX,
 Printer.PageHeight-FPixInInchY);
 Pen.Width := Round(FPixInInchX / 80); // Restore pen width
 { Draw a vertical line to separate the totals from the
 rest of the sales item information }
 MoveTo(FLeftMargin+FPixInInchX*6,trunc(2.5*FPixInInchY));
 LineTo(FLeftMargin+FPixInInchX*6,
 Printer.PageHeight-FPixInInchY);
 end;
end;
procedure TInvoiceReport.PrintHeading;
{ Prints the heading information for the invoice report }
var OldSize: Integer;
begin
 FAmountPrintedY := 0; // Set Y printing position to zero.

 with Printer.Canvas do begin
 Font.Style := [fsBold]; // Heading is printed in bold
 OldSize := Font.Size; // Save the original font size
 SetFontSize(12); // Set a new font size to 12
 { Print heading constants by centering them on page. }
 TextOut(FPageCenterX-(Round(TextWidth(Heading1) / 2)),
 FAmountPrintedY, Heading1);
 { Increment FAmountPrintedY by 1+1/20th of a line height
 in the current font. }
 FAmountPrintedY := FAmountPrintedY +
 GetLineHeight+(round(GetLineHeight /20));
 { Draw remaining header lines. }
 TextOut(FPageCenterX-(Round(TextWidth(Heading2) / 2)),
 FAmountPrintedY, Heading2);
 FAmountPrintedY := FAmountPrintedY +
 GetLineHeight+(Round(GetLineHeight / 20));
 TextOut(FPageCenterX-(Round(TextWidth(Heading3) / 2)),
 FAmountPrintedY, Heading3);
 FAmountPrintedY := FAmountPrintedY +
 GetLineHeight+(Round(GetLineHeight / 20));
 Font.Style := []; // Restore font style.
 SetFontSize(OldSize); // Restore font size.
 end;
end;
procedure TInvoiceReport.PrintCustomerInfo;
{ This procedure prints the Bill To customer information }
var
 LeftTextMargin: Integer; // Keep track of left text margin
 OldSize: Integer;
begin
 with Printer.Canvas, EdOrderForm do begin
 OldSize := Printer.Canvas.Font.Size; // Save print font size.
 SetFontSize(10); // Set printer font size to 10
 { Calculate left margin from which to start printing text. }
 LeftTextMargin := FLeftMargin + (Round(FPixInInchX / 4));
 FAmountPrintedY :=
 1*FPixInInchY + (round(FPixInInchY / 20));
 Printer.Canvas.Font.Style := [fsBold];
 TextOut(LeftTextMargin, FAmountPrintedY, ’BILL TO:’);
 { Double distance between the title and information }
 FAmountPrintedY := FAmountPrintedY+(2*GetLineHeight) +
 Round(GetLineHeight / 20);

 { ... see disk for omitted lines ... }

 end;
end;
procedure TInvoiceReport.PrintShipToInfo;
{ This procedure prints the Ship To information }
var
 LeftTextMargin: Integer;
 OldSize: Integer;
begin
 with Printer.Canvas, EdOrderForm do begin
 OldSize := Printer.Canvas.Font.Size; // Save Font size
 SetFontSize(10); // Set Font size to 10
 { Set next margin at 3 inches from original border }
 LeftTextMargin := RightBorderMargin+(FPixInInchX*3);
 FAmountPrintedY :=
 1*FPixInInchY + Round(FPixInInchY / 20);
 Printer.Canvas.Font.Style := [fsBold]; // Font to bold
 TextOut(LeftTextMargin, FAmountPrintedY, ’SHIP TO:’);
 { Double distance between the title and the information }
 FAmountPrintedY := FAmountPrintedY+(2*GetLineHeight)+
 Round(GetLineHeight / 20);
 Printer.Canvas.Font.Style := []; // Restore font style
 { Print the Ship To information }
 TextOut(LeftTextMargin, FAmountPrintedY,
 ShipToCompanyEdit.Text);
 FAmountPrintedY := FAmountPrintedY+GetLineHeight+
 Round(GetLineHeight / 20);

 { ... see disk for omitted lines ... }

 end;
end;
procedure TInvoiceReport.PrintOrderInfo;
{ Prints other miscellaneous order information. }
var
 OldSize: Integer;
 LeftTextMargin: Integer;
 LeftTextMargin2: Integer;
begin
 with Printer.Canvas, EdOrderForm, MastData do begin
 OldSize := Printer.Canvas.Font.Size; // Save font size.
 SetFontSize(10); // Set font size to 10
 { Set next margin at 5 inches from the original border }
 LeftTextMargin := RightBorderMargin+(FPixInInchX*5);
 { The string “Payment Method:” is the longest label,
 so align the data along with its data }
 LeftTextMargin2 :=
 LeftTextMargin+TextWidth(’Payment Method: ’);
 FAmountPrintedY :=
 1*FPixInInchY + Round(FPixInInchY / 20);
 { Print the additional order information }
 TextOut(LeftTextMargin, FAmountPrintedY, ’Date: ’);

August 1996 The Delphi Magazine 19

 TextOut(LeftTextMargin2, FAmountPrintedY,
 SaleDateEdit.Text);
 FAmountPrintedY := FAmountPrintedY+GetLineHeight+
 Round(GetLineHeight / 20);
 TextOut(LeftTextMargin, FAmountPrintedY, ’Cust No: ’);
 TextOut(LeftTextMargin2, FAmountPrintedY,
 CustNoEdit.Text);

 { ... see disk for omitted lines ... }

 end;
end;
procedure TInvoiceReport.PrintTitles;
{ This procedure prints the sales item titles. }
var OldSize: Integer;
begin
 with Printer.Canvas do begin
 OldSize := Printer.Canvas.Font.Size; // Save font size
 SetFontSize(8); // Set font size to 8
 FAmountPrintedY := trunc(2.5*FPixInInchY)+GetLineHeight+
 Round(GetLineHeight / 20);
 Printer.Canvas.Font.Style := [fsBold]; // font to bold.
 { Print out the titles. }
 TextOut(FLeftMargin+
 Round(FPixInInchX / 10), FAmountPrintedY, ’PART NO’);
 TextOut(FLeftMargin+FPixInInchX, FAmountPrintedY,
 ’DESCRIPTION’);
 TextOut(FLeftMargin+trunc(FPixInInchX*3.5),
 FAmountPrintedY, ’DISCOUNT’);
 { FDiscountAlignPos will hold alignment value to be used
 in printing records }
 FDiscountAlignPos := FLeftMargin+trunc(FPixInInchX*3.5)+
 TextWidth(’DISCOUNT’);
 TextOut(FLeftMargin+trunc(FPixInInchX*4.5),
 FAmountPrintedY, ’QTY’);
 TextOut(FLeftMargin+FPixInInchX*5, FAmountPrintedY,
 ’SELL PRICE’);
 { FSellPriceAlignPos will hold alignment value to be
 used in printing records }
 FSellPriceAlignPos := FLeftMargin + FPixInInchX*5 +
 TextWidth(’SELL PRICE’);
 TextOut(FLeftMargin+FPixInInchX*6 +
 Round(FPixInInchX / 10), FAmountPrintedY, ’EXT PRICE’);
 { FExtPriceAlignPos will hold alignment value to be used
 in printing records }
 FExtPriceAlignPos := FLeftMargin+FPixInInchX*6+
 Round(FPixInInchX / 10)+ TextWidth(’EXT PRICE’);
 { Restore printer information }
 Printer.Canvas.Font.Style := [];
 SetFontSize(OldSize);
 end;
end;
procedure TInvoiceReport.WriteDecimalAlign(R: TRect; S:
String; RAlignPos: Integer);
{ Used to decimal align columns of floating point values,
alignment position is specified by the RAlignPos parameter }
var
 OldAlign: Integer;
 P: Integer;
begin
 with Printer.Canvas, MastData do begin
 { Save the original alignment flag }
 OldAlign := SetTextAlign(Handle, TA_RIGHT);
 P := Pos(’.’, S); // Determine position of the decimal
 { Draw the integer portion of the value }
 TextRect(R, R.Right, R.Top, Copy(S, 1, P - 1));
 { Recalculate the alignment position }
 R.Left := R.Right;
 R.Right := RAlignPos;
 { Change alignment to left align }
 SetTextAlign(Handle, TA_LEFT);
 { Draw the fractional portion of the decimal along
 with the decimal }
 TextRect(R, R.Left, R.Top, Copy(S, P, 255));
 { Restore the original alignment flag }
 SetTextAlign(Handle, OldAlign);
 end;
end;
procedure TInvoiceReport.PrintRecords;
{ This procedure prints each sales item record }
var
 R: TRect;
 S: String;
begin
 { Recalculate the Y position from which to begin drawing }
 FAmountPrintedY := FAmountPrintedY+(GetLineHeight*2)+
 Round(GetLineHeight / 20);
 with Printer.Canvas, MastData do begin
 Items.First; // go to first item in the database.
 { Loop through sales items and print each record. }
 while (not Items.EOF) and (not PageDone) do begin
 { Print each field from the sales item. Align the data
 accordingly. }
 TextOut(FLeftMargin+Round(FPixInInchX / 10),
 FAmountPrintedY, FloatToStr(ItemsPartNo.Value));
 TextOut(FLeftMargin+FPixInInchX, FAmountPrintedY,
 ItemsDescription.Value);
 { Determine the TRect values for use with the
 WriteDecimalAlign procedure }
 R := Rect(FLeftMargin+trunc(FPixInInchX*3.5),
 FAmountPrintedY, FDiscountAlignPos -
 TextWidth(’.00%’), FAmountPrintedY+GetLineHeight);

 { Format the decimal string to pass to
 WriteDecimalAlign }
 S := FormatFloat(’0.00%’, ItemsDiscount.Value);
 WriteDecimalAlign(R, S, FDiscountAlignPos);
 { Continue printing sales item data }
 TextOut(FLeftMargin+trunc(FPixInInchX*4.5),
 FAmountPrintedY, IntToStr(ItemsQty.Value));
 R := Rect(FLeftMargin+FPixInInchX*5, FAmountPrintedY,
 FSellPriceAlignPos-TextWidth(’.00’),
 FAmountPrintedY+GetLineHeight);
 S := FormatFloat(’$0.00’, ItemsSellPrice.Value);
 WriteDecimalAlign(R, S, FSellPriceAlignPos);
 R := Rect(FLeftMargin + FPixInInchX*6 +
 Round(FPixInInchX / 10), FAmountPrintedY,
 FExtPriceAlignPos-TextWidth(’.00’),
 FAmountPrintedY+GetLineHeight);
 S := FormatFloat(’$0.00’, ItemsExtPrice.Value);
 WriteDecimalAlign(R, S, FExtPriceAlignPos);
 FAmountPrintedY := FAmountPrintedY+GetLineHeight+
 Round(GetLineHeight / 20);
 Items.Next;
 { If next record will not fit, then start a new page. }
 if (not Items.Eof) and PageDone then begin
 PrintFooter;
 Printer.NewPage;
 PrintBorders;
 PrintHeading;
 PrintCustomerInfo;
 PrintShipToInfo;
 PrintOrderInfo;
 PrintTitles;
 FAmountPrintedY := FAmountPrintedY+(GetLineHeight*2)+
 Round(GetLineHeight / 20);
 inc(FPageNum); // Increment the page number.
 end;
 end;
 end;
end;
procedure TInvoiceReport.PrintTotals;
{ This procedure prints the sales totals }
var
 LeftTextMargin: Integer;
 R: TRect;
 S: String;
begin
 { If the sales totals information + 1 inch will not fit on
 the current page go to a new page. }
 if FAmountPrintedY+FPixInInchY+(GetLineHeight*5) >=
 Printer.PageHeight - FPixInInchY then begin
 PrintFooter;
 Printer.NewPage;
 PrintBorders;
 PrintHeading;
 PrintCustomerInfo;
 PrintShipToInfo;
 PrintOrderInfo;
 PrintTitles;
 end;
 with EdOrderForm, Printer.Canvas do begin
 { Print the totals information }
 LeftTextMargin := FLeftMargin+FPixInInchX*5;
 FAmountPrintedY := FAmountPrintedY+FPixInInchY;
 TextOut(LeftTextMargin, FAmountPrintedY, ’Subtotal’);
 { Calculate TRect values to pass to WriteDecimalAlign }
 R := Rect(FLeftMargin+FPixInInchX*6+Round(FPixInInchX /
 10), FAmountPrintedY, FExtPriceAlignPos -
 TextWidth(’.00’), FAmountPrintedY+GetLineHeight);
 { If the control on the form has focus the “$” and “%”
 characters are removed. Use the Pos function to ensure
 these characters are written }
 S := TotalEdit.Text;
 if Pos(’$’, S) = 0 then
 S := ’$’+S;
 WriteDecimalAlign(R, S, FExtPriceAlignPos);
 FAmountPrintedY := FAmountPrintedY + GetLineHeight +
 Round(GetLineHeight / 20);

 { ... see disk for omitted lines ... }

 end;
end;
procedure TInvoiceReport.PrintFooter;
{ Prints footer information and page number }
begin
 with Printer.Canvas do begin
 TextOut(FLeftMargin, Printer.PageHeight-
 Round(FPixInInchX / 2), Footer);
 TextOut(RightBorderMargin*FPixInInchX -
 TextWidth(’ Page ’+IntToStr(FPageNum)),
 Printer.PageHeight-Round(FPixInInchX / 2),
 ’Page ’+IntToStr(FPageNum));
 end;
end;
function TInvoiceReport.PageDone: Boolean;
{ Determines if more can be printed on the current page. }
begin
 Result := FAmountPrintedY+GetLineHeight >=
 Printer.PageHeight - FPixInInchY;
end;
end.

20 The Delphi Magazine Issue 12

	Setting up the PtInvoice Unit
	The TInvoice Report Class
	Breaking Up The Report Into Sub-Tasks
	Print Initialization
	Printing The Borders
	Printing the Heading
	Bill To And Ship to Data
	Printing Order Data
	Sales Items and Their Titles
	Printing The Totals Printing a Footer
	Conclusion

